Reflections and Stretches

Reflection: a transformation where each point of the original graph has an image point resulting from a reflection in a line. A reflection may result in a change of orientation of a graph while preserving its shape.

Stretch: a transformation in which the distance of each x-coordinate or y-coordinate from the line of reflection is multiplied by some scale factor. Scale factors between 0 and 1 result in the point moving closer to the line of reflection; scale factors greater than 1 result in the point moving farther away from the line of reflection. A stretch changes the shape of the graph but not its orientation.

Invariant Point: a point on a graph that remains unchanged after a transformation is applied to it. Any point on a line of reflection is an invariant point.

Example 1: Compare the Graphs of y = f(x), y = -f(x), and y = f(-x)

a. Given the graph of y = f(x), graph the function y = -f(x). How is the graph of y = -f(x) related to the graph of y = f(x)?

Solution:

Use key points on the graph of y = f(x) to create a table of values.

The image points on the graph of y = -f(x) have the same x-coordinates but different y-coordinates. Multiply the y-coordinates of points on the graph of y = f(x) by -1.

	х	y = f(x)
А	-7	4
В	-3	-4
С	-1	0
D	2	3
E	4	3
	х	y=-f(x)
A'	-7	
B'	-3	
Ċ,	-1	
D'	2	
E'	4	

The graph of y = -f(x) is congruent to the graph of y = f(x).

The points on the graph of y = f(x) relate to the points on the graph of y = -f(x) by the mapping

The graph of y = -f(x) is a reflection of the graph of y = f(x) in the _____.

The points ______ and _____ are *invariant* points.

b. Given the graph of y = f(x), graph the function y = f(-x). How is the graph of y = f(-x) related to the graph of y = f(x)?

Solution:

Use key points on the graph of y = f(x) to create a table of values.

The image points on the graph of y = f(-x) have the same y-coordinates but different x-coordinates. Multiply the x-coordinates of points on the graph of y = f(x) by -1.

The graph of y = f(-x) is congruent to the graph of y = f(x).

The points on the graph of y = f(x) relate to the points on the graph of y = f(-x) by the mapping

The graph of y = f(-x) is a reflection of the graph of y = f(x) in the _____.

The point ______ is an invariant point.

Example 2: Vertical Stretches

Given the graph of y = f(x),

- transform the graph of f(x) to sketch the graph of g(x)
- describe the transformation
- state any invariant points
- state the domain and range of the functions
- a. g(x) = 2f(x)

b.
$$g(x) = \frac{1}{2}f(x)$$

Solution:

a. Use the key points on the graph of y = f(x) to create a table of values. The image points on the graph of g(x) = 2f(x) have the same x-coordinates but different y-coordinates. Multiply the y-coordinates of points on the graph of y = f(x) by 2.

							÷	÷	2							
х	y = f(x)	y = g(x) = 2f(x)							1							
-6			-7	-6	-5	-4	-3	2	1	0	1	2	3	4	5	
-2							/				/		1	/ = f(x	:)	
0																
2																<
6									-4							
									-6							
									-7							
									_0							

The points on the graph of f(x) relate to the points on the graph of g(x) = 2f(x) by the mapping

The graph of g(x) = 2f(x) is a vertical stretch of the graph of f(x) about the _____ by a factor of 2.

The invariant points are _____ and _____.

b. Use the key points on the graph of y = f(x) to create a table of values. The image points on the graph of $g(x) = \frac{1}{2}f(x)$ have the same x-coordinates but different y-coordinates. Multiply the y-coordinates of points on the graph of y = f(x) by $\frac{1}{2}$.

			_						2	1						
×	y = f(x)	$y = g(x) = \frac{1}{2}f(x)$							1							
		2	-7	-6 -	-5 -	4 -	3 /-	2 -	1	0	1	2	3	4	5 6	;
-6	_4															
2			-										\sim	y =	= †(x)	
-2	0		_							Ī				\sim		
0	-2				×											
2	0															
6	-4								5							
			-													
									-7							
										ļ						
The poir	nts on the g	raph of $f(x)$ relate t	o the po	oints o	on the	gran	h of	$\varphi(x)$	$= \frac{1}{f}$	(x)	ov the	man	ning			
The poli	ins on the g		o inc po		in the	Sight	11 01	8(^)	⁻ 2′	(,,) C	y the	mup	P'''8			
		•														
The graph of $\sigma(x) = -f(x)$ is a vertical stretch of the graph of $f(x)$ about the by a factor of $\frac{1}{2}$																
2 2																
The inva	The invariant points are and															

The domain of f(x) is	or
and the range is	or
The domain of g(x) is	or
and the range is	or

Example 3: Horizontal Stretches

Given the graph of y = f(x),

- transform the graph of f(x) to sketch the graph of g(x)
- describe the transformation
- state any invariant points
- state the domain and range of the functions
- a. g(x) = f(2x)

b.
$$g(x) = f(\frac{1}{2}x)$$

Solution:

a. Use key points on the graph of y = f(x) to create a table of values. The image points on the graph of g(x) = f(2x) have the same y-coordinates but different x-coordinates. Multiply the x-coordinates of points on the graph of y = f(x) by $\frac{1}{2}$.

The points on the graph of f(x) relate to the points on the graph of g(x) = f(2x) by the mapping

The graph of g(x) = f(2x) is a horizontal stretch of the graph of f(x) about the _____ by a factor of $\frac{1}{2}$.

The invariant point is _____.

The domain of f(x) is ______ or _____

and the range is ______ or ______.

The domain of g(x) is ______ or _____

and the range is ______ or ______.

b. Use key points on the graph of y = f(x) to create a table of values. The image points on the graph of $g(x) = f(\frac{1}{2}x)$ have the same y-coordinates but different x-coordinates. Multiply the x-coordinates of points on the graph of y = f(x) by 2.

The points on the graph of f(x) relate to the points on the graph of $g(x) = f(\frac{1}{2}x)$ by the mapping

The graph of $g(x) = f(\frac{1}{2}x)$ is a horizontal stretch	by a factor of 2.	
The invariant point is		
The domain of f(x) is	or	
and the range is	or	
The domain of g(x) is	or	
and the range is	or	

Example 4: Write the Equation of a Transformed Function

The graph of the function y=f(x) has been transformed by either a stretch or a reflection. Write the equation of the transformed graph, g(x).

Solution:

a. The shape has changed so the graph has been transformed by a stretch. In this case, the stretch can be described in two ways.

Case 1: Check for a pattern in the y-coordinates.

х	y = f(x)	y = g(x)
-4		
-2		
0		
2		
4		

A vertical stretch results when the vertical distances of the transformed graph are a constant multiple of those of the original graph with respect to the x-axis.

The transformation can be described by the mapping ______.

The equation of the transformed function is
$$g(x) = _$$
 or $g(x) = _$.

Case 2: Check for a pattern in the x-coordinates.

х	y = f(x)	х	y = g(x)
	16		16
	4		4
	1		1
	0		0
	1		1
	4		4
	16		16

A horizontal stretch results when the horizontal distances of the transformed graph are a constant multiple of those of the original graph with respect to the y-axis.

The transformation can be described by the mapping

The equation of the transformed function is g(x) =_____ or g(x) =_____.

b. The shape has changed so the graph has been transformed by a stretch. In this case, the stretch can be described as a vertical stretch.

Check for a pattern in the y-coordinates.

х	y = f(x)	y = g(x)

The transformation can be described by the mapping ______.

The equation of the transformed function is g(x) =_____.

c. The shape of the graph has not changed. The graph has been transformed by a reflection in the ______.

х	y = f(x)	y = g(x)

The transformation can be described by the mapping _	[.]	
The equation of the transformed function is $g(x) = $	or g(x) =	

Reflections and Stretches of the function y = f(x)

Function	Transformation from $y = f(x)$	Mapping	Example
y = -f(x)	• a reflection in the x-axis	$(x,y) \rightarrow (x,-y)$	y = -f(x)
y = f(-x)	• a reflection in the y-axis	$(x,y) \rightarrow (-x,y)$	y = f(-x) y = f(-x) y = f(-x) y = f(x) y = f(x)
y = af(x)	 A vertical stretch about the x-axis by a factor of a . If a < 0, then the graph is also reflected in the x-axis 	$(x,y) \rightarrow (x,ay)$	y = 3f(x)
y = f(bx)	 A horizontal stretch about the y-axis by a factor of ¹/_b. If b < 0, then the graph is also reflected in the y-axis 	$(x,y) \rightarrow (\frac{x}{b},y)$	y = f(x)