Reflections and Stretches

Reflection: a transformation where each point of the original graph has an image point resulting from a reflection in a line. A reflection may result in a change of orientation of a graph while preserving its shape.

Stretch: a transformation in which the distance of each x-coordinate or y-coordinate from the line of reflection is multiplied by some scale factor. Scale factors between O and 1 result in the point moving closer to the line of reflection; scale factors greater than 1 result in the point moving farther away from the line of reflection. A stretch changes the shape of the graph but not its orientation.

Invariant Point: a point on a graph that remains unchanged after a transformation is applied to it. Any point on a line of reflection is an invariant point.

Example 1: Compare the Graphs of $y=f(x), y=-f(x)$, and $y=f(-x)$

a. Given the graph of $y=f(x)$, graph the function $y=-f(x)$. How is the graph of $y=-f(x)$ related to the graph of $y=f(x)$?

Solution:

Use key points on the graph of $y=f(x)$ to create a table of values.
The image points on the graph of $y=-f(x)$ have the same x-coordinates but different y-coordinates. Multiply the y-coordinates of points on the graph of $y=f(x)$ by -1 .

	x	$y=f(x)$
A	-7	4
B	-3	-4
C	-1	0
D	2	3
E	4	3
A^{\prime}	x	$y=-7(x)$
B^{\prime}	-3	
C^{\prime}	-1	
D^{\prime}	2	
E^{\prime}	4	

The graph of $y=-f(x)$ is congruent to the graph of $y=f(x)$.
The points on the graph of $y=f(x)$ relate to the points on the graph of $y=-f(x)$ by the mapping
\qquad .

The graph of $y=-f(x)$ is a reflection of the graph of $y=f(x)$ in the \qquad .

The points \qquad and \qquad are invariant points.
b. Given the graph of $y=f(x)$, graph the function $y=f(-x)$. How is the graph of $y=f(-x)$ related to the graph of $y=f(x)$?

Solution:

Use key points on the graph of $y=f(x)$ to create a table of values.

The image points on the graph of $y=f(-x)$ have the same y-coordinates but different x-coordinates. Multiply the x-coordinates of points on the graph of $y=f(x)$ by -1 .

	x	$y=f(x)$
A	-7	4
B	-3	-4
C	-1	0
D	2	3
E	4	3
$\mathrm{~A}^{\prime}$	x	$y=f(-x)$
B^{\prime}		4
C^{\prime}		-4
D^{\prime}		0
E^{\prime}		3

The graph of $y=f(-x)$ is congruent to the graph of $y=f(x)$.
The points on the graph of $y=f(x)$ relate to the points on the graph of $y=f(-x)$ by the mapping
\qquad .

The graph of $y=f(-x)$ is a reflection of the graph of $y=f(x)$ in the \qquad .

The point \qquad is an invariant point.

Example 2: Vertical Stretches

Given the graph of $y=f(x)$,

- transform the graph of $f(x)$ to sketch the graph of $g(x)$
- describe the transformation
- state any invariant points
- state the domain and range of the functions
a. $g(x)=2 f(x)$
b. $g(x)=\frac{1}{2} f(x)$

Solution:

a. Use the key points on the graph of $y=f(x)$ to create a table of values. The image points on the graph of $g(x)=2 f(x)$ have the same x-coordinates but different y-coordinates. Multiply the y-coordinates of points on the graph of $y=f(x)$ by 2.

x	$y=f(x)$	$y=g(x)=2 f(x)$
-6		
-2		
0		
2		
6		

The points on the graph of $f(x)$ relate to the points on the graph of $g(x)=2 f(x)$ by the mapping
\qquad -.

The graph of $g(x)=2 f(x)$ is a vertical stretch of the graph of $f(x)$ about the \qquad by a factor of 2 .

The invariant points are \qquad and \qquad .

The domain of $f(x)$ is \qquad or \qquad
and the range is \qquad or \qquad .

The domain of $g(x)$ is \qquad or \qquad and the range is \qquad or \qquad .
b. Use the key points on the graph of $y=f(x)$ to create a table of values. The image points on the graph of $g(x)=\frac{1}{2} f(x)$ have the same x-coordinates but different y-coordinates. Multiply the y-coordinates of points on the graph of $y=f(x)$ by $1 / 2$.

x	$y=f(x)$	$y=g(x)=\frac{1}{2} f(x)$
-6	-4	
-2	0	
0	-2	
2	0	
6	-4	

The points on the graph of $f(x)$ relate to the points on the graph of $g(x)=\frac{1}{2} f(x)$ by the mapping
\qquad .

The graph of $g(x)=\frac{1}{2} f(x)$ is a vertical stretch of the graph of $f(x)$ about the \qquad by a factor of $1 / 2$.

The invariant points are \qquad and \qquad .

The domain of $f(x)$ is \qquad or \qquad and the range is \qquad or \qquad .

The domain of $g(x)$ is \qquad or \qquad and the range is \qquad or \qquad .

Example 3: Horizontal Stretches

Given the graph of $y=f(x)$,

- transform the graph of $f(x)$ to sketch the graph of $g(x)$
- describe the transformation
- state any invariant points
- state the domain and range of the functions
a. $g(x)=f(2 x)$
b. $g(x)=f\left(\frac{1}{2} x\right)$

Solution:

a. Use key points on the graph of $y=f(x)$ to create a table of values. The image points on the graph of $g(x)=f(2 x)$ have the same y-coordinates but different x-coordinates. Multiply the x-coordinates of points on the graph of $y=f(x)$ by $1 / 2$.

x	$y=f(x)$
	3
	1
	-1
	1
	3
x	$y=g(x)=f(2 x)$
	3
	1
	-1
	1
	3

The points on the graph of $f(x)$ relate to the points on the graph of $g(x)=f(2 x)$ by the mapping
\qquad -.

The graph of $g(x)=f(2 x)$ is a horizontal stretch of the graph of $f(x)$ about the \qquad by a factor of $1 / 2$.

The invariant point is \qquad .

The domain of $f(x)$ is \qquad or \qquad
and the range is \qquad or \qquad .

The domain of $g(x)$ is \qquad or \qquad and the range is \qquad or \qquad .
b. Use key points on the graph of $y=f(x)$ to create a table of values. The image points on the graph of $g(x)=f\left(\frac{1}{2} x\right)$ have the same y-coordinates but different x-coordinates. Multiply the x-coordinates of points on the graph of $y=f(x)$ by 2 .

x	$y=f(x)$
	2
	1
	0
	-1
	0
	1
	2
x	$y=g(x)=f\left(\frac{1}{2} x\right)$
	2
	1
	0
	-1
	0
	1
	2

The points on the graph of $f(x)$ relate to the points on the graph of $g(x)=f\left(\frac{1}{2} x\right)$ by the mapping

The graph of $g(x)=f\left(\frac{1}{2} x\right)$ is a horizontal stretch of the graph of $f(x)$ about the \qquad by a factor of 2 .

The invariant point is \qquad .

The domain of $f(x)$ is \qquad or \qquad
and the range is \qquad or \qquad .

The domain of $g(x)$ is \qquad or \qquad and the range is \qquad or \qquad .

Example 4: Write the Equation of a Transformed Function

The graph of the function $y=f(x)$ has been transformed by either a stretch or a reflection. Write the equation of the transformed graph, $g(x)$.
a.

b.

c.

$$
f(x)=|x|
$$

$g(x)$

Solution:

a. The shape has changed so the graph has been transformed by a stretch. In this case, the stretch can be described in two ways.

Case 1: Check for a pattern in the y-coordinates.

x	$y=f(x)$	$y=g(x)$
-4		
-2		
0		
2		
4		

A vertical stretch results when the vertical distances of the transformed graph are a constant multiple of those of the original graph with respect to the x-axis.

The transformation can be described by the mapping \qquad .

The equation of the transformed function is $g(x)=$ \qquad or $g(x)=$ \qquad -

Case 2: Check for a pattern in the x-coordinates.

x	$y=f(x)$	\times	$y=g(x)$
	16		16
	4		4
	1		1
	0		0
	1		1
	4		4
	16		16

A horizontal stretch results when the horizontal distances of the transformed graph are a constant multiple of those of the original graph with respect to the y-axis.

The transformation can be described by the mapping
\qquad .

The equation of the transformed function is $g(x)=$ \qquad or $g(x)=$ \qquad -.
b. The shape has changed so the graph has been transformed by a stretch. In this case, the stretch can be described as a vertical stretch.

Check for a pattern in the y-coordinates.

x	$y=f(x)$	$y=g(x)$

The transformation can be described by the mapping \qquad .

The equation of the transformed function is $g(x)=$ \qquad .
c. The shape of the graph has not changed. The graph has been transformed by a reflection in the \qquad .

x	$y=f(x)$	$y=g(x)$

The transformation can be described by the mapping \qquad .

The equation of the transformed function is $g(x)=$ \qquad or $g(x)=$ \qquad .

Reflections and Stretches of the function $y=f(x)$

Function	Transformation from $y=f(x)$	Mapping	Example
$y=-f(x)$	- a reflection in the x-axis	$(x, y) \rightarrow(x,-y)$	
$y=f(-x)$	- a reflection in the y-axis	$(x, y) \rightarrow(-x, y)$	
$y=a f(x)$	- A vertical stretch about the x-axis by a factor of $\|a\|$. - If a <0, then the graph is also reflected in the x-axis	$(x, y) \rightarrow(x, a y)$	
$y=f(b x)$	- A horizontal stretch about the y-axis by a factor of $\frac{1}{\|b\|}$. - If $b<0$, then the graph is also reflected in the y-axis	$(x, y) \rightarrow\left(\frac{x}{b}, y\right)$	

